Abstract

Extracorporeal Acoustic Wave Therapy (AWT) has been successfully used in dermatology in the course of several clinical application studies, initially as a non-invasive method for providing effective long-term therapy for age-related connective tissue weakness at the extremities, specifically the cosmetically blemishing condition referred to as cellulite. The acoustic pressure waves improve microcirculation in the fatty tissue and existing disruptions of the metabolic regulation, thereby reducing the externally visible signs of cosmetic cellulite. The measured elasticity values improve significantly under treatment by acoustic pressure waves, while having a low-level and justifiable side-effect profile. The measured parameters for mechanical skin properties, the skin structure and the subjects' personal satisfaction levels make it possible to issue a favourable prognosis for long-term effectiveness (beyond 6 months). No clinically relevant side effects were observed during the application.

Boosting skin elasticity and revitalising the dermis in cellulite and connective tissue weakness by means of extracorporeal Acoustic Wave Therapy (AWT)

C. Christ
Aesthetic Plastic Surgery
Utoquai, Zurich

R. Brenke
Hufeland Clinic, Bad Ems

G. Sattler
Rosenpark Clinic, specialist clinic for aesthetic/operative dermatology, Darmstadt

G. Gabriel
Cortex Technology ApS
Hadsund, Denmark

W. Siems
KortexMed GmbH, Bad Harzburg

A. Daser
StorzMedical AG
Tägerwilen, Switzerland
Problem
The cosmetic problem of cellulite, which has often been described,
is caused firstly by increased fat deposits around the buttocks and
thighs, while secondly the skin’s ageing process contributes to this
appearance because the collagen layers become thinner and thinner.
The predisposition is genetic and is described as a typical female
problem: Women have 21 to 22 billion fat cells, men only 17 to 18
billion. Women’s fatty tissue stores fat more quickly and easily than
men’s does, because the fat reserves serve as an energy store during
pregnancy (1,2). The main cause of this problem lies in the structure and condition of the connective tissue. In the region of a woman’s thigh, arc-

shaped collagenic fibre tracts standing almost perpendicular subdi-
vide the subcutis. These structures determine the skin relief in the
transitional area between the corium and the subcutis. In what is
referred to as the pinch test, a woman’s skin displays protrusion of
the systems of fatty chambers and the typical orange-peel pattern
results (1,8). A woman’s skin is overall more distensible than male
skin.

The objective of this investigation was to apply AWT treatment in
order to mobilise the metabolic processes in the subcutaneous fatty
tissue to such an extent that the connective tissue structure would
be reinforced, the skin relief and therefore skin structure would be
significantly increased and therefore that there would be a signifi-
cant visible reduction in cellulite.

Introduction: Loss of skin elasticity
The skin, particularly female skin, is an organ that is dependent on
hormones. For example, the changes in the hormone balance during
the menopause result in accelerated skin ageing. The skin of me-
opausal women becomes more flaccid, is frequently dry and the
contours of the face lose their freshness and taughtness. In the epi-
dermis, oestrogens promote new cell formation and the production
of collagenic fibres (9). With the loss of oestrogens, the formation
of new collagens declines and the quality of the newly formed col-
lagens is impaired. The number of elastic skin fibres declines and
their structure changes. The epidermic tissue becomes more flaccid
whereas the subcutis becomes harder (1,8,9).
The defensive forces of female skin also decline gradually due to ageing processes. There is an increased buildup of protein molecules in the skin that have been modified by interaction with oxygen radicals. Free radicals are not only formed by external effects such as sunlight or ozone. Processes such as smoking, stress, poor diet or obesity can lead to a buildup of free radicals in the body’s tissue.

Another point concerns the blood flow through the skin which makes it possible to transport oxygen and nutrients as well as allowing immune cells to circulate. The flow of lymphatic fluid is markedly disrupted by an excessively sedentary lifestyle, e.g. lengthy sitting or lying down, fat deposits build up and if the procedure continues this leads to optically visible changes referred to as orange-peel skin or cellulite (1,5).

Subjects and methodology
A population of 69 women with pronounced cellulite (stage 2-3 in the pinch test) and age-related connective tissue weakness was divided into three groups with somewhat different treatment regimes:

a) Group 1 with only six therapy sessions in three weeks, only treated with planar waves (C-Actor®).
b) Group 2 with eight therapy sessions in four weeks, only treated with planar waves (C-Actor®).
c) Group 3 with ten subjects, also with six therapy sessions, only treated with radial waves (D-Actor®).

The first two groups were treated during the period from December 2005 to April 2006. The women were subjected to a preliminary medical examination, then treated on the outer and inner thigh region as well as the gluteal area using a new therapy instrument, the Cellactor® SC1 (Storz Medical AG) for generating extracorporeal acoustic waves. The third group was treated in autumn 2006, involving the same treatment regime.

The number of pulses applied per patient and per therapy unit was the same in the first two groups. Group 3 was treated with 4000 pulses in each treatment region using the radial applicator.

The exclusion criteria for both groups were as follows:

- Pregnancy/breast feeding
- Phlebitis or deep leg vein thrombosis in the anamnesis
- Inflammations in the treatment area
- Liposuction in the treatment area more than six months in the past.

Therapy instrument
Acoustic pulses generated extracorporeally propagate through the tissue in the form of acoustic waves that are characterised by their high pressure amplitudes, rapid pressure rise and brief, asymmetrical pulse waveform. They can briefly transmit energy from the place of generation to distant areas and induce specific effects there.
Acoustic pulses used for medical purposes are generated outside the body and directed into the body without injuring the skin. In order to prevent reflection losses as much as possible during the transition into the body, the acoustic wave must not be generated and transmitted in air but in a medium with similar acoustic properties as those of human tissue. The planar applicator of the Cellactor® SC1 device developed by the Swiss company Storz Medical has a coupling diaphragm for this purpose, which is brought into contact with the patient’s skin. Contact is assisted by applying ultrasound gel in order to avoid energy losses due to air inclusions.

Fig. 2a: Radial applicator, referred to as D-Actor®, of the Cellactor® SC1

Fig. 2b: Planar applicator, referred to as C-Actor®, of the Cellactor® SC1

Fig. 3 Cellactor® SC1

800 pulses were applied to the previously defined regions in the gluteal and femoral area using the C-Actor®, therefore each subject received 3200 pulses with an average energy level of 0.25 mJ/mm².

The radial application involved 4000 pulses/region administered using the radial applicator (D-Actor®). Each treatment region covered an area of about 20 x 30 cm which was „scanned“ using the applicator in both the horizontal and vertical directions. In this way, it was possible to ensure that the tissue was evenly treated.

Measurement methodology
Current application observation made use of the Derma-Lab®, an instrument for measuring the modulus of elasticity, from Cortex Technology. It is based on the stress/elongation relationship that is generated by means of a vacuum (0 – 65 kPa). The measurements are given in MPa. According to the manufacturer’s figures, the accuracy is in the region of 2 percent. A measurement was taken at the same location on the skin before each session.

The Derma Scan C® ultrasound device from the same company was used for determining the change in the connective tissue structure in the corium and the transition to the subcutis. A resolution of 60 x 130 μm with a penetration depth of 10 mm can be represented using the 20 MHz ultrasound head.
Published values for skin elasticity

<table>
<thead>
<tr>
<th></th>
<th>Stress, MPa</th>
<th>Elongation%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscle</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Artery</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Skin</td>
<td>12</td>
<td>120</td>
</tr>
</tbody>
</table>

Stress, MPa - Elongation%

Muscle, Artery, Skin

Fig. 5: Wilcoxon signed rank test normality test: Group 1 with n = 14 patients from a population of 15 people, who were treated six times. A follow-up was performed three months after the last treatment. One subject could not be included in the evaluation because of one missing measurement value.

Series 1: 6 treatments, 14 patients

<table>
<thead>
<tr>
<th></th>
<th>Modulus of elasticity of the skin in MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td>6.92</td>
</tr>
<tr>
<td>Post</td>
<td>10.01</td>
</tr>
<tr>
<td>3M follow-up</td>
<td>12.36</td>
</tr>
</tbody>
</table>

Modulus of elasticity of the skin in MPa

Pre, Post, 3M follow-up

Zero-echo structures show up as black areas, connective tissue structures are reflected as green, red or yellow. It is a basic requirement for measurement or analysis of ultrasound images that the images have to be created with the same instrument and the same gain setting. The intensity of ultrasound reflection makes it possible to determine the relative density of the tissue and therefore to draw conclusions about the arrangement of collagenic and elastic fibres. The colour scale provides information about the magnitude of the reflection: White = maximum reflection descending to black = no reflection. Only few published values are available for comparing our observation series with, and the published values also vary rather widely. The lack of standardised measuring methods for determining mechanical skin properties has already been criticised in the medical literature (6). For this reason, only measurement values taken using the same measuring instrument can be compared with one another. In this case, it is possible to ensure that the mechanical stress applied and the traction speed are identical.
Results

1) Change in skin elasticity:

a) Group 1 with six therapy units; C-Actor® application: 3-month follow-up (see Fig. 5). Elevated MPa values indicate that greater pressure was needed to raise the skin, therefore that the skin resilience was higher.

b) Group 2 with eight therapy units; C-Actor® application: 6-month follow-up (see Fig. 6)

The values measured at the end of therapy for the skin elasticity indicated an increase of 74 percent, whilst in the follow-up after three months the increase was actually in the region of 95 percent. The increase in elasticity values measured in the 6-month follow-up was 105 percent. Normally, the improvements to skin properties achieved by chemical skin preparations (creams, lotions) are in the region of 12 to 25 percent, with just over 30 percent recorded in individual cases. According to Dr. Voss (consultant dermatologist and the head of Dermatest GmbH), above 40 percent represents an extraordinary result (2).

It can be assumed that AWT therapy stimulates the microcirculation in fatty tissue and therefore significantly improves the disruptions localised there. The side effects of an acoustic pressure wave attuned to the subcutis are reduced to a minimum; all that is to be expected is a painful sensation during the course of the treatment application or a reddening of the skin. This was confirmed by the patients’ experience in 95 percent of the cases (2).

2) Analysis and evaluation of the ultrasound images

The ultrasound images (see Fig. 7) were anonymised using the manufacturer’s image coding and subjected to a blind evaluation by an independent group in accordance with the following criteria:

Score 1 = Looser structure; Score 2 = Firmer structure; Score 3 = Firm structure.

Fig. 6: Wilcoxon signed rank test normality test; group 2 with n = 42 patients (population n = 44) who were treated on eight occasions and who attended the follow-up both three months and six months after the last treatment. Two subjects were excluded from this group due to missing measurement data.

8 treatments, 42 patients

Modulus of elasticity of the skin in MPa

Series 1: Pre, Post, 3M follow-up, 6M follow-up
Fig. 7: Dermascan image of a 54-year old patient with cellulite. Left (pre): The dermis/subcutis transitions appear as a very discontinuous, irregular line; the black structures are fat cells and lymphatic fluid. Right (post): The skin structure has become measurably more compact; the zero-echo spaces (black) have reduced further.

The images were collated in a PowerPoint presentation and shown to the evaluators in a random sequence independently of one another.

The result of this objective, visual assessment is as follows (see Fig. 8):
The evaluation of the ultrasound images revealed a rise in cell density. The trend in the visually ascertained resilience values can be evaluated as significant.

3) Cosmetic assessment
Cosmetic effect on the upper arms of a female patient before and after AWT therapy, group B with six treatment units (see Fig. 9); effect in gluteal area (see Fig. 10).

Discussion
The observations and results indicate the possibility of AWT therapy influencing biological tissue, in particular by promoting microcirculation and influencing cell permeability (18,19,20).

In the case of cellulite, it is to be assumed that the transport capability of the lymph vessels is restricted. In the advanced stages of cellulite, lipodema, the system of lymph vessels is unable to return sufficient protein molecules from the interstitium into the venous bloodstream. The high concentration of plasma proteins in the interstitium leads to fibrification and therefore a modification of the tissue properties. This results in an increase in the impedance jump and this is where the acoustic pulse wave exerts its effect. The older the subjects with cellulite described in their records for many years, the greater the measured therapeutic effect.

in vitro experiments have shown that cells exposed to sound with acoustic pulses briefly become permeable and this allows active substances (such as cytostatic agents) to be introduced (22). In the application described here, it is this cell permeability that could be promoting the metabolism of the fat cells and leading to the activation of enzymes that break down fat (phospholipases) by means of receptors on the fat cell membrane (3,5,6).

The evaluation of the ultrasound images documents a visually detectable tissue conversion. The collagenic/elastic network of fibres in the skin and subcutis increases and becomes measurably firmer. Biochemical investigations conducted so far as part of this series of application observations indicate that the oxidative stress in the tissue is reduced, something which presumably represents a favourable condition for collagen synthesis (23). This would also help explain the described long-term effect on skin elasticity values lasting up to 6 months.

Microbiological observations on collagen synthesis
As already emphasised, it has been demonstrated that AWT therapy applied to lipodemas and cellulite enables the concentration of aldehydic lipid peroxidation products such as malondialdehyde to be reduced significantly under in vivo conditions (23). If the extent of lipid peroxidation (LPO) processes and the accumulation of
cytotoxic LPO products can be reduced, by which is meant favourably influenced, then this represents a reliable although indirect indication that low-molecular antioxidances are being curtailed. Consequently, it is above all the most important low-molecular antioxidances such as glutathione, tocopherol (VitE) and ascorbic acid (VitC) that are consumed to a reduced extent, with the effect that the intracellular and extracellular concentrations of compounds of this kind remain elevated.

Fig. 8: Evaluation of the score appraisals of the Dermascan images, including 3 and 6-month follow-up investigations.

Dermascan evaluation

![Graph](image)

Score / Pre, Post, 3M follow-up, 6M follow-up

The text books state that, in the case of ascorbic acid, this is closely connected with protecting and improving the biosynthesis of collagen (25). As such, L-ascorbic acid is not only accredited with acting as a classic water-soluble antioxidant, but also as an electron donator or protective enzyme in hydroxylations.

Hydroxylases are required for the biosynthesis of collagen and carnitine. In the normal cycle of reactions of prolyl 4-hydroxylase, a hydroxyprolyl peptide is created involving the decarboxylation and oxidation of alpha-ketoglutarate to succinate. The valency of the enzyme-bound iron does not change. Non-concatenated reaction cycles result in the decarboxylation and oxidation of alpha-ketoglutarate. In this case, oxygen is split off as a superoxide radical and the bivalent iron is oxidised to trivalent iron. Since this means the enzyme would be deactivated for the next reaction cycles, Fe$^{3+}$ must be reduced by ascorbic acid. This means ascorbic acid undertakes an important protective function in the hydroxylases involved in collagen metabolism and carnitine biosynthesis (25).

It is not for nothing that scurvy, an illness which occurs when there is a massive lack of ascorbic acid, is associated with serious disruptions to the connective tissue metabolism and in particular also lack of collagen formation. This is because the hydroxylisation reactions of collagen biosynthesis are severely impaired. Vitamin C-dependent hydroxylisation of collagen is therefore essential for its structure and function.

An extensive series of experimental and clinical results as well as clinical application observations support the close positive interaction between vitamin C and collagen stability in the skin (26,27,28,29,30,31,32,33,34,35,36,37).

A European study published in 1997 into the effectiveness of a suction-roller massage instrument on cellulite (25) did show a therapeutic effect of up to 60 percent using the same ultrasound parameters in terms of reducing zero-echo structures in the corium/subcutis transition. However, the authors merely described the achieved tissue status as enduring for 1.1 months (24).
Based on the current status of observing the effectiveness of AWT treatment, the achieved tissue status can be demonstrated for up to 6.5 months following completion of the last therapy unit.

AWT treatment is a non-invasive therapy process and its application requires relatively little of both the doctor’s and the patient’s time. No serious side effects have been observed, although long-term observations should continue to be carried out. AWT treatment could develop into a promising therapy process without side effects in the fields of body shaping and skin rejuvenation with a real long-term effect.

Fig. 9: Before and after AWT therapy. (© Rosenpark Clinic Darmstadt)

Fig. 10: Cosmetic effect of cellulite, in this case reinforced in the gluteal area before (left), after (middle) and in the follow-up of six sessions of AWT therapy. (© Rosenpark Clinic, Darmstadt)
1. Dr. med. Werner Voss; Dr. Stefan Siebrecht „Gesunde Haut“; Trias Verlag, 2005; pages 102 ff.
2. Dr. med. Werner Voss; Dr. med. Gerrit Schlippe; „Gutachten zur Wirkung der Stoßwellentherapie auf das subkutane Fettgewebe und ihrer Wirkung auf die kosmetische Cellulite“; Dermatest GmbH, Medical Research Company, (12.2005)
12. Laura E. Edsberg, PhD; Robert E. Mates, PhD; Robert E. Baier, PhD; Mark Lauren, ME; Mechanical characteristics of human skin subjected to static versus cyclic normal pressures; Journal of Rehabilitation Research and Development, Vol.36 No.2, April 1999
13. Maass, Künnapfel, Noninvasive measurements of elastic properties of living tissues
20. C.E. Bachmann; „ESWT und Sonographie der Stütz- und Bewegungsorgane“, Steinkopf Verlag Darmstadt, 1999, page 4
22. M. Delius; F. Ueberle; L.Guo; „Anwendung von Stoßwellen für den Transfer von Molekülen in Zellen“; Biomedizinische Technik, vol. 47; part 1, pages 382 ff.; 2002
24. G.W. Lucassen, W.L.N. van der Sluys, J.J. van Herk; “The effectiveness of massage treatment on cellulite as monitored by ultrasound imaging”; Skin Research and Technology 1997; Denmark; 154-160

